Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward
نویسنده
چکیده
The response of soil organic matter (OM) decomposition to increasing temperature is a critical aspect of ecosystem responses to global change. The impacts of climate warming on decomposition dynamics have not been resolved due to apparently contradictory results from field and lab experiments, most of which has focused on labile carbon with short turnover times. But the majority of total soil carbon stocks are comprised of organic carbon with turnover times of decades to centuries. Understanding the response of these carbon pools to climate change is essential for forecasting longer-term changes in soil carbon storage. Herein, we briefly synthesize information from recent studies that have been conducted using a wide variety of approaches. In our effort to understand research to-date, we derive a new conceptual model that explicitly identifies the processes controlling soil OM availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances. It explicitly defines resistance of soil OM to decomposition as being due either to its chemical conformation (quality) or its physico-chemical protection from decomposition. The former is embodied in the depolymerization process, the latter by adsorption/desorption and aggregate turnover. We hypothesize a strong role for variation in temperature sensitivity as a function of reaction rates for both. We conclude that important advances in understanding the temperature response of the processes that control substrate availability, depolymerization, microbial efficiency, and enzyme production will be needed to predict the fate of soil carbon stocks in a warmer world.
منابع مشابه
The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon
The response of resistant soil organic matter to temperature change is crucial for predicting climate change impacts on C cycling in terrestrial ecosystems. However, the response of the decomposition of different soil organic carbon (SOC) fractions to temperature is still under debate. To investigate whether the labile and resistant SOC components have different temperature sensitivities, soil ...
متن کاملLitter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils
Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding (13)C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, respo...
متن کاملOrganic Matter Decomposition following Harvesting and Site Preparation of a Forested Wetland
Organic matter accumulation is an important process that affects ecosystem function in many northern wetlands. The cotton strip assay (CSA) was used to measure the effect of harvesting and two different site preparation treatments, bedding and trenching, on organic matter decomposition in a forested wetland. A Latin square experimental design was used to determine the effect of harvesting, site...
متن کاملSorption, degradation and leaching of pesticides in soils amended with organic matter: A review
The use of pesticides in modern agriculture is unavoidable because they are required to control weeds. Pesticides are poisonous; hence, they are dangerous if misused. Understanding the fate of pesticides will be useful to use them safely. Therefore, contaminations of water and soil resources could be avoided. The fates of pesticides in soils are influenced by their sorption, decomposition and m...
متن کاملInvestigation Role of Vermicompost to Improve Quantitative and Qualitative Characteristics of Corn (Zea mays L.) Production
Overuse of different chemical fertilizers is one of the causes for the degradation of environment and soil. Biological fertilizers are the newest and most technically advanced way of supplying mineral nutrients to crops. Compared to chemical fertilizers, their supply nutrient for plant needs, minimizes leaching, and therefore improves fertilizer use efficiency. Vermicompost is an organic compou...
متن کامل